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LATTICE BOLTZMANN SIMULATION OF FLOWS IN A
THREE-DIMENSIONAL POROUS STRUCTURE
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SUMMARY

The lattice Boltzmann method (LBM) with the fifteen-velocity model is applied to simulations of
isothermal flows in a three-dimensional porous structure. A periodic boundary condition with a pressure
difference at the inlet and outlet is presented. Flow characteristics at a pore scale and pressure drops
through the porous structure are calculated for various Reynolds numbers. It is found that at high
Reynolds numbers, unsteady vortices appear behind bodies and the flow field becomes time-dependent.
Calculated pressure drops through the structure are compared with well-known empirical equations
based on experimental data. The results agree well with the Blake–Kozeny equation for low Reynolds
numbers and with the Ergun equation for high Reynolds numbers. Copyright © 1999 John Wiley &
Sons, Ltd.

KEY WORDS: lattice Boltzmann method; periodic boundary condition; porous structure

1. INTRODUCTION

The problems of flows in porous media are very important in many science and engineering
fields, such as geophysics, hydraulics, soil mechanics, chemical and petroleum engineering, and
so on. In these problems, volume-averaged approaches are usually used to obtain macroscopic
properties of flows in porous media. In order to estimate pressure drops in porous media the
Blake–Kozeny equation [1] and the Ergun equation [2], which are both empirical equations
based on experimental data, are often used for low and high Reynolds numbers respectively.
In recent studies, Fand et al. [3] made experimental studies of flow through porous media
composed of randomly packed spheres and proposed the useful correlation equations between
pressure gradients and flow velocities. Liu et al. [4] studied laminar flows in porous media and
presented a new averaging approach to the pressure gradient term. However, the relation
between flow fields at a pore scale and pressure drops has not been so clear in these studies.
In other words, the flow characteristics in porous media have not been investigated so clearly
from the microscopic point of view.

As for numerical simulations, on the other hand, when conventional Navier–Stokes codes
are applied to flows in porous media, one often has trouble with long computation times, poor
convergence and numerical stabilities. Therefore, it is desired to develop another computa-
tional method. Rothman [5] and Chen et al. [6] used the lattice gas automata (LGA) for
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simulations of flows through porous media to study microscopic behaviors occurring at a
pore scale and to obtain volume-averaged parameters from the microscopic point of view.
Succi et al. [7] and Cancelliere et al. [8] used the lattice Boltzmann method (LBM) [9,10]
for similar problems. The main advantages of the LGA and LBM are the simplicity of the
algorithm and the flexibility for complex geometries. However, the above mentioned simula-
tions by the LGA and LBM were applied for relatively low Reynolds numbers and re-
stricted in laminar flow regions. Recently, Inamuro et al. [11] have studied the problems of
flow and heat transfer in a two-dimensional porous structure for a wide range of Reynolds
numbers by using the LBM.

In the present paper, the LBM with the fifteen-velocity model [10] (a three-dimensional
model) is used for simulations of flows in a three-dimensional porous structure for high
Reynolds numbers as well as for low Reynolds numbers. Also, a periodic boundary condi-
tion with a pressure difference at the inlet and outlet is presented.

2. LATTICE BOLTZMANN METHOD

2.1. Method of computation

In the LBM, a modeled fluid, composed of identical particles whose velocities are re-
stricted to a finite set of vectors ci, is considered and the evolution of particle population at
each lattice site in physical space is computed. Hereafter, non-dimensional variables are
used as in [12]. In the computation, the physical space is divided into a lattice, e.g. a cubic
lattice for three-dimensional models. The evolution of the particle distribution function
fi(x, t) with velocity ci at the point x and at time t is computed by the following equation
[9,10]:

fi(x+cid, t+Dt)− fi(x, t)= −
1
t

r(x, t)[ fi(x, t)− f i
eq(x, t)], (1)

where f i
eq is an equilibrium distribution function, t is a single relaxation time, d is a lattice

spacing, and Dt is a time step during which the particles travel the lattice spacing. The
BGK model [13] is used for collision terms in Equation (1). As in the kinetic theory of
gases, density r and flow velocity u are defined in terms of the particle distribution
function as follows:

r=%
i

fi, (2)

u=
1
r

%
i

fici, (3)

and pressure p is related to density r by [12]

p=
1
3

r. (4)

It is found that using Equations (1)–(4), one can obtain the macroscopic flow velocities
and the pressure gradient for incompressible fluid with relative errors of O(o % 2) where o % is
a modified Knudsen number that is of the same order as the lattice spacing d and is
related to the relaxation time t [12].
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2.2. Three-dimensional lattice model and equilibrium distribution function

The fifteen-velocity model [10], shown in Figure 1, is used for the following calculations. The
velocity vectors of the particle of this model are given by

[c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15]
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(5)

An equilibrium distribution function of this model is given by

f i
eq=Eir

�
1+3ci ·u+

9
2

(ci ·u)2−
3
2

u ·u
n

for i=1, 2, 3, . . . , 15, (6)

where E1=2/9, E2=E3=E4=E5=E6=E7=1/9, and E8=E9=E10=E11=E12=E13=
E14=E15=1/72.

The viscosity m of the fluid is related to the relaxation time t and the lattice spacing d by
[12]

m=
1
3
�

t−
1
2
�

d. (7)

3. BOUNDARY CONDITIONS

A three-dimensional porous structure shown in Figure 2 is considered. The structure consists
of nine identical spherical bodies in a rectangular domain. A periodic boundary condition with
a pressure difference is used at the inlet and outlet. The other faces are considered to be slip
walls. Boundary conditions for particle distribution functions are needed in computations.

Figure 1. Fifteen-velocity model.
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Figure 2. Three-dimensional porous structure.

3.1. At inlet and outlet

A periodic boundary condition with a pressure difference is used on the inlet at x/L=0 and
the outlet at x/L=1 in Figure 2. Hereafter, the suffix ‘in’ and ‘out’ represent quantities at the
inlet and outlet respectively. At the inlet and outlet, the unknown distribution functions, whose
velocity points to the fluid region, are determined as follows. At the inlet, the unknown
distribution functions are f2, f8, f10, f11 and f13. Taking account of the form of the equilibrium
distribution functions given by Equation (6), and the fact that second- and higher-order terms
of Knudsen number are regarded as errors [12], it is assumed that the unknown distribution
functions at the inlet can be written by adding a constant value to the corresponding known
distribution functions at the outlet as follows:

f2�in= f2�out+C, (8)

fi �in= fi �out+
1
8

C for i=8, 10, 11, 13. (9)

Similarly, at the outlet the unknown distribution functions f5, f9, f12, f14 and f15 are assumed to
be written by subtracting a constant value from the corresponding known distribution
functions at the inlet:

f5�out= f5�in−C, (10)

fi �out= fi �in−
1
8

C for i=9, 12, 14, 15. (11)

Then the constant value C is determined so that the pressure difference between the inlet and
outlet is equal to Dp. That is, using Equations (2) and (4), we get

C=Dp−
1
3

(f1�in− f1�out+ f3�in− f3�out+ f4�in− f4�out+ f6�in− f6�out+ f7�in− f7�out). (12)

Substituting Equation (12) into Equations (8)–(11), all of the unknown distribution functions
at the inlet and outlet are determined for the given Dp.

In addition, on the corner line, e.g. on the line BC, f2, f8, f10, f11, f13, f3, f9 and f14 are
unknown. In these unknown distribution functions, f2, f8, f10, f11 and f13 are determined by the
above mentioned procedure at the inlet, and the others f3, f9 and f14 are determined by the slip
boundary condition described below.
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3.2. On side of domain

As mentioned before, slip boundary conditions are assumed at the side wall. For example,
at the lattice site on the face FBCG, f3, f8, f9, f11 and f14 are unknown distribution functions
and are simply determined as follows:

f3= f6,
f8= f10,
f9= f15,
f11= f13,
f14= f12.

Ì
Ã

Ã

Â

Å

(13)

On the corner line, e.g. on the line BF, f3, f8, f9, f11, f14, f7, f12 and f13 are unknown. In these
unknowns, f3, f8, f9, f11 and f14 are determined by Equation (13), and the others f7, f12 and f13

are determined by regarding the line BF as a part of the face ABFE, i.e.

f7= f4,
f12= f15,
f13= f10.

Ì
Â

Å
(14)

Moreover, the unknown distribution functions at the vertex can be determined by the
combination of the above mentioned conditions. For example, at the vertex B, the unknown
distribution functions are f2, f3, f7, f8, f9, f10, f11, f12, f13 and f14. In these unknown distribution
functions, f2, f8, f10, f11 and f13 are determined by the procedure at the inlet, and the others f3,
f7, f9, f12 and f14 are determined by the above mentioned slip boundary condition on the side.

3.3. At lattice site on body

In Figure 3, the lattice site P is a boundary point on the body and S is a tangential plane
on the site P. n is the normal vector along the line connecting the site P with the center of the
body. Then, two unit vectors perpendicular to n are defined as t and b so that n, t and b are
orthonormal bases. The velocity vectors of the particle are written in terms of the orthonormal
bases as

ci=cinn+citt+cibb. (15)

As seen from Figure 3, the distribution functions on the lattice site P such that cin\0 are
unknown. The no-slip boundary condition [14] is applied to the present problem. Thus, the

Figure 3. Tangential plane S on the lattice site of body and orthonormal bases n, t and b.
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unknown distribution functions are assumed to be an equilibrium distribution function with a
counter slip velocity, which is determined so that the fluid velocity at the surface is equal to
zero. Then the unknown distribution functions are expressed by

fi=Eir %
�

1+3(citu %t+cibu %b)+
9
2

(citu %t+cibu %b)2−
3
2

(u %t 2+u %b2)
n

, (16)

where r %, u %t and u %b are unknown parameters. The unknown u %t and u %b are the counter slip
velocity. The three unknown parameters are determined on the condition that the fluid velocity
at the surface is zero. Thus, three equations corresponding to the three components of the fluid
velocity are obtained. However, in the following, the counter slip velocities u %t and u %b are set
to be zero, because the counter slip velocities often cause numerical instabilities for high
Reynolds numbers. In the present calculations, therefore, the only unknown parameter r % is
specified as follows:

r %= −
%

i(ci n50)

cinfi

%
i(ci n\0)

Eicin

. (17)

4. RESULTS AND DISCUSSION

Flows in the three-dimensional porous structure, shown in Figure 2, are calculated. Nine
identical bodies are included in the domain of H=W=0.945L. The whole domain is divided
into 73×69×69 cubic lattice in the x-, y- and z-directions. The body is made up of a lattice
block contained in a circumscribed sphere with a diameter of 28.4d. It is expected that the
equivalent diameter of the body Dp is larger than that of the circumscribed sphere, but one can
not determine the value of Dp in advance of calculations. Here, we tried to determine the value
of Dp by comparing a calculated pressure drop with the Blake–Kozeny equation at the lowest
Reynolds number as explained below. The determined value of Dp is equal to 29.4d. Then the
porosity o of the structure is 0.654. The centers of the bodies are located at (x/L, y/H, z/W)=
(0.21, 0.29, 0.22), (0.21, 0.74, 0.81), (0.22, 0.71, 0.22), (0.23, 0.32, 0.80), (0.48, 0.49, 0.49),
(0.75, 0.80, 0.29), (0.78, 0.23, 0.70), (0.78, 0.78, 0.70) and (0.80, 0.23, 0.29). In the calculations,
the pressure difference Dp between the inlet and outlet and the fluid viscosity m are changed so
that the range of the Reynolds numbers Re= r̄inūinDp/m is 0.8425Re5159, where r̄in (=1)
and ūin are the time- and space-averaged density and velocity at the inlet after transitional
flows respectively. The initial conditions for the flow velocity and density are u=0 and r=1
in the whole domain. In preliminary computations, also used were 38×35×35 and 49×46×
46 cubic lattices. Then almost grid-independent results for low Reynolds numbers were
obtained, but numerical instabilities for high Reynolds numbers occurred when the coarse
grids were used.

Figures 4–6 show the calculated results of velocity vectors on the different planes (y/H=
0.17, 0.62, and x/L=0.51) for various Reynolds numbers after transitional flows. In these
figures, the length of vectors is normalized so that the ūin has the same length in spite of
different Reynolds numbers, and the bodies in the structure are depicted by the spheres with
the equivalent diameter Dp. It is found from Figures 4–6 that at low Reynolds number
Re=0.842, the fluid flow avoids the bodies and goes through open spaces. At Re=29.3, on
the other hand, the flow separations begin to occur and weak vortices appear behind the
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Figure 4. Velocity vectors on the plane y/H=0.17 in the porous structure for various Reynolds numbers: (a)
Re=0.842, ūin=4.29×10−3; (b) Re=29.3, ūin=1.86×10−2; (c) Re=159, ūin=4.37×10−2.

bodies. At Re=159, the vortices behind the bodies grow three-dimensionally and hence the
flow field on x/L=0.51 is quite different from those at the lower Reynolds numbers. Also, it
is found that at the high Reynolds numbers, the strength of each vortex varies as time goes on,
and the flow field becomes time-dependent.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 737–748 (1999)
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Figure 7 shows the fluctuations of the x-component of the flow velocity ux at the three
different points in the domain for Re=159. The three points are located at (x/L, y/H, z/W)=
(0.55, 0.17, 0.88), (0.45, 0.62, 0.09) and (0.51, 0.84, 0.14). It is found that large velocity fluctua-
tions with a wide range of frequencies exist in the whole domain. In particular, the velocity

Figure 5. Velocity vectors on the plane y/H=0.62 in the porous structure for various Reynolds numbers: (a)
Re=0.842, ūin=4.29×10−3; (b) Re=29.3, ūin=1.86×10−2; (c) Re=159, ūin=4.37×10−2.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 737–748 (1999)
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Figure 6. Velocity vectors on the plane x/L=0.51 in the porous structure for various Reynolds numbers: (a)
Re=0.842, ūin=4.29×10−3; (b) Re=29.3, ūin=1.86×10−2; (c) Re=159, ūin=4.37×10−2.

fluctuation at (x/L, y/H, z/W)= (0.51, 0.84, 0.14), where unsteady vortices exist as shown in
Figure 6(c), has more high-frequency components than those at other points. Thus, it is seen
that the flow field at Re=159 becomes time-dependent and very complicated. In addition, it
is noted that the time variation of the space-averaged velocity at the inlet in this case is only

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 737–748 (1999)
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Figure 7. Fluctuations of the x-component of the flow velocity ux at the three different points in the domain for
Re=159. The locations of the three points are (a) (x/L, y/H, z/W)= (0.55, 0.17, 0.88); (b) (x/L, y/H, z/W)=
(0.45, 0.62, 0.09); (c) (x/L, y/H, z/W)= (0.51, 0.84, 0.14). ūx is the time-averaged value of ux. t is the dimensionless

time based on the reference time t0 during which the averaged inflow goes through the domain.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 737–748 (1999)
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Figure 8. Pressure drop versus Reynolds numbers in the porous structure; �, the present calculated results; – – –, the
Blake–Kozeny equation [1]; —, the Ergun equation [2]. The error bar indicates the range of calculated results by

changing Dp between 28.4d and 30.4d.

about 2% of the mean value in spite of the large time variations of the local velocity fields, as
shown in Figure 7.

Finally, the calculated results of pressure drops are compared with empirical equations
based on experimental data. Figure 8 shows the dimensionless pressure drops versus the
Reynolds numbers multiplied by 1/(1−o). It is noted that the porosity o of the structure
depends only on Dp when the whole rectangular domain is unchanged. As mentioned above,
we tried to determine the value of Dp by comparing the calculated pressure drop with the
Blake–Kozeny equation at the lowest Reynolds number. The error bar at the lowest Reynolds
number in Figure 8 shows the range of the results calculated by changing the value of Dp

between 28.4d and 30.4d. Comparing the calculated results with the Blake–Kozeny equation,
it was found that a good agreement is obtained with Dp=29.4d, as shown by the closed circle
in Figure 8. Then, the same value of Dp was used for other Reynolds numbers. It is seen from
Figure 8 that the calculated results of the pressure drops agree well with the empirical
equations for the wide range of Reynolds numbers, although at high Reynolds numbers the
calculated results become a little smaller than the Ergun equation. It is also found from
Figures 4–6 and Figure 8 that the region of the Reynolds numbers where the pressure drops
deviate from the Blake–Kozeny equation corresponds to the appearance of the vortices behind
the bodies in the structure.

5. CONCLUDING REMARKS

The LBM with the fifteen-velocity model has been applied to simulations of flows in a
three-dimensional porous structure. Flow fields at a pore scale and pressure drops through the
structure are obtained for various Reynolds numbers. The calculated pressure drops agree well
with the empirical equations based on experimental data. Consequently, it was found that the
LBM is useful for the investigation of microscopic properties of flows in porous media. It is
also noted that one can apply the LBM to the problems of heat and mass transfer using other
velocity models for heat-conducting and multicomponent fluids.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 737–748 (1999)
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